FAA-S-ACS-6 June 2016 Private Pilot Airplane Airman Certification Standards

Cessna 172: mixture rich, carb heat out if below the green arc. Clearing Turns all manuevers!

<u>Task</u>	<u>ACS</u>	<u>Settings</u>	
Traffic Pattern	1. Altitude: +/-100ft	2200 rpm	
	2. Airspeed: +/- 10kts	See traffic pattern	
	3. Wind Correction for correct	diagram and expanded	
	ground track	information	
1	To account to the	1	
Normal Takeoff	1. Maintains centerline	1. Flaps zero	
	2. Rotates at Vr	2. Vr = 55kts	
	3. Climbs at Vy +10/-5kts	3. Vy = 75kts	
	4. Used correct wind correction	1	
	NOTES: X-wind place yoke fully into the v	vind. As airspeed increase	
1	decrease the aileron deflection.		
Normal Approach/	1. Stabilized approach at not	On Final:	
Landing	more than 1.3Vso	1. Flaps 30 degs	
	2. Adds Gust factor	2. 60-65kts	
	3. Touches down during stall	3. Maintain	
İ	4. At Touchdown point -0/+400ft	centerline	
İ	5. With mains on each side of	Ī	
İ	centerline (no drift)	•	
İ	X-W NOTES: Ailerons into wind. Opposit	e rudder to keep longitudinal axis	
İ	aligned with runway centerline. After tou	- -	
Longentarion	La ren escente con escente de la conse	14 Fb 40 do.	
Soft Field Takeoff	1. Lift off at lowest safe airspeed	1. Flaps 10 deg	
	(read this as bottom of green arc)	2. Yoke full back	
	2. Stay in Ground Effect until Vx	3. Keep nosewheel	
	3. Climb at Vx +10/-5kts	off ground	
	4. After obstacle, climb at	4. Ground effect	
	Vy +10/-5kts	5. Vx =60kts	
	5. Maintain runway centerline	6. Flaps up positive rate	
<u> </u>	throughout ground roll and climb	and clear obstacles	
	I	7. Vy = 75kts	

<u>Task</u>	<u>ACS</u>	<u>Settings</u>
Soft Field Approach/	1. Stabilized approach at not more	1. Final 60-65kts
Landing	1.3Vso	2. Full Flaps
	2. Adds Gust Factor	3. Use flatter
	3. Keeps nose wheel off the surface	approach
	until elevator loses effectiveness	4. Land with 1200 rpm
	4. Keeps elevator full up until exits the	5. Keep nosewheel
	soft area	up
	5. Maintains centerline between the	6. Nosewheel up
	mains at all times.	until exit runway
Short Field Takeoff/	1. Rotates at Vr	1. Flaps Zero
Max Perf Climb	2. Climbs at Vx +10/-5kts	2. Full brakes/max power
	3. After obstacle cleared, retracts Flaps	3. Release brakes
	4. Climbs at Vy +10/-5kts	4. Vr = 50-55kts
	5. Maintains centerline during ground	5. Vx = 60kts
	roll and climb	6. Vy=75kts
	1	1
Short Field Approach/	1. Stabilized approach at not more	1. Final: 60kts
<u>Landing</u>	than 1.3Vso	2. Flaps full
	2. Adds Gust factor	3. Brakes as needed
	3. Touches down at -0ft/+200ft of point	4. Flaps up?
	selected. Landing short is a	
	guaranteed failure	
	4. Maintain centerline throughout	
	5. Applies brakes firmly but without	
	any tire slippage	1
Forward Slip to Landing	1. Applies proper forward slip techniques	1. Apply rudder then
	(wind low into wind, opposite rudder)	wing down into the wind
	2. Touches down -0/+400ft of touchdown	2. Adjust rudder/wing as
	point selected	needed to maintain a
		straight ground track to
	1	the runway

<u>Task</u>	<u>ACS</u>	<u>Settings</u>		
Go Around/Rejected	1. Makes a timely decision	1. Add full power		
Landing	2. Establishes Vx or Vy +10/-5kts	2. Airspeed 60+kys		
	3. Retracts flaps as appropriate	3. Flaps up slowly		
	4. Establishes Vy +10/-5kts	4. Vy = 75kts		
1	5. Maintains Centerline throughout	1		
l o (o.o.)	La AUG de 1/4000			
Steep Turns (360deg	1. Altitude: +/-100ft	1. Va 2100-2200RPM		
turn at 45deg bank)	2. Bank Angle: +/-5deg	2. 45deg bank		
1	3. Rollout +/-10deg	3. Add 200rpm		
 	4. Airspeed +/-10kts	5. Decrease 200rpm		
I	I	on rollout		
S Turns (at 600 to	1. Altitude: +/-100ft	1. 1800ft MSL		
1000ft AGL)	2. Airspeed: +/-10kts	2. 2200rpm		
	3. Maintains coordinated flight	3. Radius 1/2mile		
	1	4. Equal semicircles		
	Notes: Enter downwind. Find a perpendic	ular road. As soon as		
	wings cross road, begin a coordinated turn. Complete semicircle			
	rolling wings levelas you cross the road. Then repeat in the opposite			
1	direction. Steep bank downwind. Shallow	bank upwind.		
Turns Around a Point	1. Altitude: +/-100ft	1. 1800ft MSL		
(600 to 1000ft AGL)	2. Airspeed: +/-10kts	2. 2200rpm		
	3. Maintains coordinated flig	3. Radius 1/2 mile		
İ	Notes: Enter downwind. Pick a point. Ma			
İ	this first point by flying to additional points that are of equal distances			
İ	around the original point. Steep bank downwind and Shallow bank			
İ	upwind.			
Pilotage (plan can be	1. +/-3miles from centerline of	1. Make checkpoints		
paper or electronic)	planned route	no more than a		
	2. Altitude: +/-200ft	total of 15miles		
İ	3. Heading: +/-15deg	from start		
İ	4. Arrives at checkpoint within 5mins			
İ	of estimated	i		
•	•	, '		

<u>Task</u>	ACS	<u>Settings</u>	
Radio/Electronic	1. Altitude +/-200ft	1. Tune VOR	
<u>Navigation</u>	2. Heading +/-15deg	2. Center needle TO	
	3. Must use Radio and Electronic	3. Turn to heading	
	navigation to track a course and	4. Keep needle	
	obtain location	centered	
<u>Diversion</u>	1. Altitude: +/-200ft	1	
	2. Heading: +/-15deg	1	
	3. Appropriate diversion to an airport	1	
	4. Calculates: Time, Heading,	1	
	Groundspeeed, Arrival Time, and	1	
	Fuel Consumption	I	
Lost Procedures	1. Uses the 5 C's to determine	1. Confess	
	course of action	2. Climb	
		3. Communicate	
		4. Conserve	
	1	5. Comply	
Slow Flight	1. >1500ft AGL Thoughout (3000ft MSL)	1. 1700rpm (Carb H on)	
	2. Airspeed 5 to 10kts above stall speed	2. Flaps 30deg	
	3. Altitude: +/-100ft	3. Airspeed 55-60kts	
	4. Heading: +/-10deg	4. Pitch for Airspeed	
	5. Airspeed: +10/-0kts	5. Power for Altitude	
	6. Bank angle: +/-10degs from specified	6. Lower Nose/Full Power	
	I	Carb H, Flaps, Cruise Flight	
Power Off Stall	1. >1500ft AGL throughout (3000ft MSL)	1. 1700rpm (Carb H on)	
	2. Established a stabilized descent	2. Flaps 30deg	
	3. Heading: +/-10deg	3. 60kts	
	4. Bank: 20deg +/-10deg	4. 500ft/min descent	
	5. Recover after a full stall	5. Throttle idle	
	6. Recovers appropriately	6. Pitch to Full stall	
	7. Returns to altitude, heading and	7.Lower Nose/Full Power	
	airspeed specified by examiner	Carb H, Flaps, Cruise Flight	

<u>Task</u>	ACS	<u>Settings</u>		
Power On Stalls	1. >1500ft AGL throughout (3000ft MSL)	1. Flaps zero		
	2. Establish takeoff, departure or cruise	2. RPM 1500rpm (CH on)		
	config as specified by examiner	3. Airspeed 65kts		
	3. Set power now less than 65% BHP	4. RPM 2100rpm (CH off)		
	4. Heading: +/-10deg	5. Pitch up for full stall		
	5. Bank Angle: +/-10deg	6. Lower Nose/Full Power		
	6. Recover at full stall	Carb H, Cruise Flight		
	7. Vx then Cleanup	1		
	8. Return to Altitude, Heading and	1		
1	Airspeed specified by examiner	1		
Spin Awareness	1. Assess situations where spins	1		
	may occur	1		
1	2. Explain spin recovery procedure	1		
Basic Instrument	1. Altitude: +/-200ft	1. Straight & Level		
(constant airspeed	2. Heading: +/-20deg	2. Climb 500ft/min		
climbs, descents, turns,	3. Airspeed: +/-10kts	3. Descend 500ft/min		
ATC communitications)	Ī	4. Turns		
Unusual Flight Attitudes	1. Altitude: +/-200ft	Nose High - Airspeed Low		
	2. Heading: +/-20deg	Add Power		
	3. Airspeed: +/-10kts	Lower Nose		
	1	Level Wings		
	1	Establish Cruise Flight		
	1	Nose Low - Airspeed High		
	1	Reduce Power		
	1	Level Wings		
	1	Raise Nose		
1	1	Establish Cruise Flight		
Emergency Descent	1. Selects appropriate configuration for	1. Throttle Idle		
	the descent	2. Flaps zero		
	2. Completes appropriate checklist	3. Pitch for bottom		
	1	of yellow arc		
	T			

<u>Task</u>	<u>ACS</u>	<u>Settings</u>	<u>Settings</u>	
Simulated engine loss	1. ABC (Airspeed, Best place to land,	1. Best Glide 65kts		
approach and landing	Checklist) 2. Best place to I			
	2. Airspeed: +/-10kts	within 15 sec's		
	3. Prepare for landing	3. Emergency Checklist		
	1	4. Verify best place		
	1	to land		
	1	5. Recover above		
	1	500ftAGL	-	
Systems Malfunctions	1	1		
(3 of the following items)	1	1		
1. Door opening in flight	8. Loss of Oil Pressure	Per Checklist/POH		
2. Icing	9. Fuel Starvation	I		
3. Smoke/fire/engine	10. Electrical	1		
compartment	11. Vacuum Pressure	1		
4. Glass Cockpit	12. Pitot/Static	1		
5. Power loss	13. Flap/Landing Gear	1		
6. Engine Roughness	14. Inop Trim	1		
7. Carb/Induction Icing	1	1	- 1	